Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems. I. Classical algorithms

نویسندگان

  • Daniel B. Szyld
  • Fei Xue
چکیده

We study the local convergence rates of several most widely used single-vector Newton-like methods for the solution of a degenerate eigenvalue of nonlinear algebraic eigenvalue problems of the form T (λ)v = 0. This problem has not been completely understood, since the Jacobian associated with Newton’s method is singular at the desired eigenpair, and the standard convergence theory is not applicable. In fact, Newton’s method generally converges only linearly towards singular roots. In this paper, we show that the local convergence of inverse iteration, Rayleigh functional iteration and the JacobiDavidson method are at least quadratic for semi-simple eigenvalues. For defective eigenvalues, Newton-like methods converge only linearly in general. The results are illustrated by numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems: II. Accelerated algorithms

The computation of a defective eigenpair of nonlinear algebraic eigenproblems of the form T (λ)v = 0 is challenging due to its ill-posedness and the linear convergence of classical single-vector Newton-like methods. In this paper, we propose and study new accelerated Newton-like methods for defective eigenvalues which exhibit quadratic local convergence at the cost of solving two linear systems...

متن کامل

Preconditioned Eigensolvers for Large-scale Nonlinear Hermitian Eigenproblems with Variational Characterizations. I. Conjugate Gradient Methods

Preconditioned conjugate gradient (PCG) methods have been widely used for computing a few extreme eigenvalues of large-scale linear Hermitian eigenproblems. In this paper, we study PCG methods to compute extreme eigenvalues of nonlinear Hermitian eigenproblems of the form T (λ)v = 0 that admit a nonlinear variational principle. We investigate some theoretical properties of a basic CG method, in...

متن کامل

Preconditioned eigensolvers for large-scale nonlinear Hermitian eigenproblems with variational characterizations. I. Extreme eigenvalues

Efficient computation of extreme eigenvalues of large-scale linear Hermitian eigenproblems can be achieved by preconditioned conjugate gradient (PCG) methods. In this paper, we study PCG methods for computing extreme eigenvalues of nonlinear Hermitian eigenproblems of the form T (λ)v = 0 that admit a nonlinear variational principle. We investigate some theoretical properties of a basic CG metho...

متن کامل

Convergence orders of iterative methods for nonlinear eigenvalue problems

The convergence analysis of iterative methods for nonlinear eigenvalue problems is in the most cases restricted either to algebraic simple eigenvalues or to polynomial eigenvalue problems. In this paper we consider two classical methods for general holomorphic eigenvalue problems, namely the nonlinear generalized Rayleigh quotient iteration (NGRQI) and the augmented Newton method. For both meth...

متن کامل

Modify the linear search formula in the BFGS method to achieve global convergence.

<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2015